Chem. Ber. 109, 2622-2627 (1976)

Die Kristall- und Molekülstruktur von 4,4,6,6-Tetrafluor-1,3,5,2 λ^5 ,4 λ^5 ,6 λ^5 -triazatriphosphorin-2,2-diamin

Siegfried Pohl und Bernt Krebs*

Fakultät für Chemie, Universität Bielefeld, Universitätsstraße, D-4800 Bielefeld

Eingegangen am 12. Dezember 1975

Die Struktur des geminalen $N_3P_3F_4(NH_2)_2$ (3) wurde aus Röntgenbeugungsdaten bestimmt und zu einem R-Wert von 3.5% verfeinert. Die Verbindung kristallisiert orthorhombisch in der Raumgruppe Pnma. Der $(P-N)_3$ -Ring ist innerhalb der Fehlergrenzen planar. Die P-N-Abstände betragen im $(NH_2)_2P-N-P(F_2)$ -Segment 1.597 und 1.524 Å mit dem kürzeren Abstand auf der Seite der PF_2 -Gruppe. Im $(F_2)P-N-P(F_2)$ -Segment ergibt sich die P-N-Bindungslänge zu 1.564 Å. Damit sind die Mittelwerte der Bindungslängen in jedem P-N-P-Segment nahezu gleich groß. Die Mittelwerte für die P-F- und die $P-N_{Amin}$ -Bindungslängen betragen 1.532 bzw. 1.602 Å. Die N-P-N-Winkel im Ring wurden zu 110.4° und 120.5°, die P-N-P-Winkel zu 125.7° und 117.2° beobachtet.

The Crystal and Molecular Structure of 4,4,6,6-Tetrafluoro-1,3,5,2 λ^5 , $4\lambda^5$, $6\lambda^5$ -

triazatriphosphorine-2,2-diamine

The crystal structure of the geminal isomer of $N_3P_3F_4(NH_2)_2$ (3) was determined by X-ray analysis and was refined to R = 0.035. Crystals of the compound are orthorhombic, space group *Pnma*. The six-membered $(P-N)_3$ ring is planar within the limits of error. In the $(NH_2)_2P-N-P(F_2)$ segment the P-N bond lengths are 1.597 and 1.524 Å with the shorter one on the side of the PF_2 group. In the $(F_2)P-N-P(F_2)$ segment the P-N bond length is 1.564 Å. The mean bond lengths in each P-N-P segment are nearly equal. The mean values for the P-F and $P-N_{amine}$ bond lengths were found to be 1.532 and 1.602 Å, respectively. The endocyclic angles are: N-P-N110.4°, 120.5°; P-N-P 125.7°, 117.2°.

Eine Reihe von Röntgenstrukturanalysen ist an trimeren Cyclophosphazenen mit unterschiedlichen Liganden der allgemeinen Form $N_3P_3R'_xR''_{6-x}$ durchgeführt worden¹⁻⁹. Dabei zeigte sich, daß stark elektronegative Substituenten die endocyclischen P-N-Bindungen im Mittel verkürzen. Dagegen bewirken Atome, die exocyclische π -

¹⁾ N. V. Mani, F. R. Ahmed und W. H. Barnes, Acta Crystallogr. 19, 693 (1965).

²⁾ N. V. Mani, F. R. Ahmed und W. H. Barnes, Acta Crystallogr. 21, 375 (1966).

³⁾ F. R. Ahmed und D. R. Pollard, Acta Crystallogr., Sect. B 28, 513 (1972).

⁴⁾ F. R. Ahmed und D. R. Pollard, Acta Crystallogr., Sect. B 28, 3530 (1972).

⁵⁾ C. W. Allen, J. B. Faught, T. Moeller und I. C. Paul, Inorg. Chem. 8, 1719 (1969).

⁶⁾ P. Clare, T.J. King und D. B. Sowerby, J. Chem. Soc., Dalton Trans. 1974, 2071.

⁷⁾ S. Pohl und B. Krebs, Chem. Ber. 108, 2934 (1975).

⁸⁾ F. R. Ahmed und E. J. Gabe, Acta Crystallogr., Sect. B 31, 1028 (1975).

⁹⁾ M. Biddlestone, G. J. Bullen, P. E. Dann und R. A. Shaw, J. Chem. Soc., Chem. Commun. 1974, 56.

Bindungsanteile ermöglichen, eine Verlängerung dieser Bindungen bei gleichzeitiger Verkleinerung der N-P-N-Winkel im Ring. Bei unsymmetrischer Verteilung beider Arten von Substituenten im Molekül ergibt sich eine besonders starke Verzerrung des $(P-N)_3$ -Gerüstes. Nach der Aufklärung der Struktur von 2⁷ haben wir nun 3 untersucht, über dessen strukturellen Aufbau im folgenden berichtet wird.

F _P N _{≥P} F		R	R '
F' `F NN	1	F	F
	2	F	NH2
A A	3	NH2	NH2

Experimentelles, Gitterkonstanten und Raumgruppe

3 läßt sich nach Niecke¹⁰ durch Umsctzung von N₃P₃Cl₄(NH₂)₂ mit CsF in Acetonitril darstellen. Die Verbindung kristallisiert orthorhombisch mit den Gitterkonstanten (durch Diffraktometermessungen verfeinert, in Klammern 2 σ , Werte für 20°C) a =7.412(3) Å, b = 7.578(3) Å, c = 14.550(5) Å, V = 817.3 Å³ und Z = 4 Moleküle/Zelle. Experimentelle und röntgenographische Dichte betragen 1.96 ± 0.02 g/cm³ bzw.

Experimentene und rontgenögraphische Dichte betragen 1.90 ± 0.02 g/cm 3.

Aus den systematischen Auslöschungen (0kl: nur k + l = 2n, hk0: nur h = 2n vorhanden), der Laue-Symmetrie und einer statistischen Analyse der normalisierten Strukturfaktoren ergab sich die Raumgruppe *Pnma*. Mit der achtzähligen Punktlage dieser Raumgruppe und dem Fehlen eines Symmetriezentrums im Molekül war bei Z = 4 dessen spezielle Lage auf einer Spiegelebene zu erwarten.

Auf einem computergesteuerten Syntex-P2₁-Diffraktometer wurden zur Ermittlung der Intensitäten 976 Reflexe im Bereich sin $\Theta/\lambda < 0.64 \text{ Å}^{-1}$ mit Mo- K_{α} -Strahlung gemessen ($\lambda = 0.7107 \text{ Å}$, Graphit-Monochromator, Szintillationszähler, ω -2 Θ -Messung). Für die Datenmessung wurde ein Kristall mit den Dimensionen 0.32 × 0.12 × 0.12 mm verwendet, der in eine Glaskapillare eingeschlossen war. Die Reduktion zu Strukturfaktoren erfolgte durch Lorentz- und Polarisationsfaktorkorrekturen sowie eine Wilson-Statistik. Bei einem linearen Absorptionskoeffizienten von 7.6 cm⁻¹ und einem maximalen μR -Wert von 0.12 für den verwendeten Einkristall konnte auf eine Absorptionskorrektur verzichtet werden.

Strukturbestimmung

Die Struktur wurde aus der dreidimensionalen Patterson-Synthese¹¹⁾ gelöst. Das Auffinden der P-P-Vektoren, die etwa gleichseitige Dreiecke bilden mußten, war dabei die Grundlage zur Bestimmung der Fluor- und Stickstoff-Positionen.

Die Verfeinerung erfolgte nach dem Verfahren der kleinsten Fehlerquadrate zunächst mit isotropen, dann mit anisotropen Temperaturfaktoren der Form $\exp\left[-\frac{1}{4}(B_{11}a^{*2}h^{2} + a^{*2}b^{2})\right]$

¹⁰⁾ E. Niecke, unveröffentlicht.

¹¹¹ Die Rechnungen wurden auf einer PDP 10-Anlage und einem NOVA 1200-Rechner durchgeführt. Neben eigenen Programmen wurden modifizierte Versionen der Busing-Martin-Levy-Programme ORFLS und ORFFE, das Programm ORTEP von C. K. Johnson, sowie Teile des Syntex-XTL-Programmsystems verwendet.

 $B_{22}b^{*2}k^2 + B_{33}c^{*2}l^2 + 2B_{12}a^*b^*hk + 2B_{13}a^*c^*hl + 2B_{23}b^*c^*kl)$]. Die H-Atome wurden aus einer anschließenden Differenz-Fourier-Synthese lokalisiert. Ihre Lageparameter wurden bei konstanten isotropen B-Werten (5.0) in die Verfeinerung einbezogen. Die R-Werte konvergierten für 732 beobachtete Reflexe mit $F > 3.92 \sigma$ (F) zu $R_1 = 0.052$ und $R_2 = 0.035$ (alle Reflexe: $R_1 = 0.071$, $R_2 = 0.036$; R_1 , R_2 : ungewichteter bzw. gewichteter R-Wert). Das Gewichtsschema basierte auf der statistischen Varianz der Meßwerte (Definition von R_1 , R_2 und σ siehe l. c. ¹²). Die Atomformfaktoren für P, N, F und H wurden den International Tables ¹³⁾ entnommen. Für alle Parameter waren die Änderungen im letzten Zyklus kleiner als 0.1σ . Eine abschließende Differenz-Fourier-Synthese zeigte Restelektronendichten von maximal $0.35 e^{-}/Å^3$. Die Liste der beobachteten und berechneten Strukturfaktoren steht auf Anforderung bei den Autoren zur Verfügung.

Beschreibung der Struktur und Diskussion der Ergebnisse

In Tab. 1 sind die endgültigen Atomkoordinaten und Temperaturparameter, in Tab. 2 die interatomaren Abstände und Bindungswinkel aufgeführt. Abb. 1 zeigt ein Molekül von 3, Abb. 2 eine Projektion der Elementarzelle. Bindungslängen und -winkel von verschiedenen unsymmetrisch substituierten trimeren Cyclophosphazenen sind in Tab. 3 zusammengestellt.

Tab. 1. Atomparameter	· mit	Standardabweichungen ^a
-----------------------	-------	-----------------------------------

Atom	Punkt-	x	у	2	^B 11	B ₂₂	^B 33	B ₁₂	B ₁₃	^B 23
P 1	8d	0,14408(16)	0,42617(15)	0,34576(7)	5,53(6)	3,55(5)	5,19(6)	0,84(5)	-1,95(5)	-0,08(5)
P2	4c	0,39783(19)	0,25	0,45212(10)	3,40(7)	3,00(6)	3.43(7)	0,0	-0,47(6)	0,0
F1	8d	-0,00874(37)	0,53986(36)	0,38456(19)	9,60(20)	7,36(17)	8,74(17)	4,80(17)	-2,37(15)	-2,18(15)
F2	8d	0,18629(36)	0,54142(32)	0,26192(18)	9,17(17)	5,56(13)	8,28(16)	-0,52(14)	2,60(15)	-2,96(14)
N 1	8d	0,30378(50)	0,42303(41)	0,41177(25)	8,47(24)	2,54(15)	8,73(25)	0,24(16)	-5,28(20)	-0,11(16)
N2	4c	0,03953(63)	0,25	0,30997(33)	4,78(26)	4,40(24)	5,56(27)	0,0	-2,31(22)	0,0
N 3	4 c	0,60931(69)	0,25	0,43063(35)	3,70(26)	7,00(34)	3,88(24)	0,0	0,50(23)	0,0
N4	4c	0,39346(73)	0,25	0,56246(35)	4,34(30)	5,71(31)	3.43(26)	0,0	0,14(22)	0,0
Н1	4c	0,631(8)	0,25	0,375(3)						
H2	8d	0,689(8)	0,364(8)	0,428(4)	a) Die Zi	ffern in Kl	ammern beze	ichnen hier	r und in de	r
нз	4c	0,305(7)	0,25	0,59690(4)	folgen	den Tabelle	die Stands	rdabweichu	agen in Ein-	-
Н4	8d	0,455(9)	0,428(9)	0,587(5)	heiten	der letzte	n angegeber	en Dezimal:	stelle.	

C 539/75 Teb 1

C 539/75 Tab.2

Tab. 2. Interatomare Abstände und Bindungswinkel

Bindungsabstände- und winkel

P1 - N1	1,524(5)8	P2 - N4	1,606(6)8	N1 - P1 - N2	120,5(3)	P1 - N1 - P2	125.7(3)°
P1 - N2	1,564(5)	N3 - H1	0,82	N1 - P1 - F1	1 10,5(3)°	P1 - N2 - P1'	117,2(3)
P1 - F1	1,531(4)	N3 - H2	1,05	N1 - P1 - 72	110,6(3)	N1 - P2 - N1'	110.4(3)°
P1 - F2	1,533(4)	N4 - H3	0,82	N2 - P1 - F1	107,9(3)°	N1 - P2 - N3	110,9(3)°
P2 - N1	1,597(5)	N4 - H4	0,83	N2 - P1 - F2	107,7(3)°	N1 - P2 - N4	111,0(3)
P2 - N3	1,598(6)			F1 - P1 - F2	97,1(3)°	N3 - P2 - N4	102,4(3)°

¹²⁾ B. Krebs und S. Pohl, Chem. Ber. 106, 1069 (1973).

¹³⁾ International Tables for X-Ray Crystallography, Vol. IV, Kynoch Press, Birmingham 1974.

Tab. 3.	Vergleich	von	Bindungslängen	und	-winkeln	in	trimeren	Cyclophosphazenen	mit	un-
			symmetrisc	her A	nordnung	; de	r Ligande	n		

Verbindung	P-N _{Ring}	[%]	* _R -P-* _R	[*]	P-N _R -P	[°]		
	Mittel- vert	Einzelwerte von - bis	Nittel- vert	Einzelwerte von - bis	Nittel- vert	Einzelwerte von - bis	Literatur	
gem. N3P3C14(C6H5)2	1.583	1.555-1.617	118.2	115.2-119.8	121.1	119.2-122.4	1	
gen. N3P3F4(C6H5)2)	1.572	1.539-1.618	118.9	115.5-120.7	120.5	120.0-120.7	5	
gem. N ₃ P ₃ F4(NH ₂)2	1.562	1.524-1.597	117.1	110.4-120.5	122.9	117.2-125.7	diese Arb.	
N3P3F5NH2	1.565	1.551-1.586	118.6	116.9-119.7	121.3	120.8-121.5	7	
gem. N3P3C13 [N(CH3)2]	1.577	1.545-1.608	117.6	113.1-120.7	122.0	118.5-124.2	3	
gen. N3P3(C6H5)4C12	1.581	1.556-1.619	117.3	115.0-120.8	122.3	120.3-124.9	2	

a) Mittelwerte von swei Molekülen in der asymmetrischen Einheit. (2539/75 1803)

Abb. 1. Molekül von 3 im Kristall. a) Schwingungsellipsoide (40% Wahrscheinlichkeit); b) Bindungsabstände (in Å) und -winkel

Abb. 2. 3: Projektion der Elementarzelle parallel zur a-Achse

3 bildet einen nahezu planaren P-N-Sechsring. Die Abstände der Atome des Ringes von der "besten" (mittleren) Ringebene betragen für P1, P1', P2: 0.003 Å, 0.003 Å, 0.006 Å, für N1, N1', N2: -0.005 Å, -0.005 Å, -0.002 Å, sind also im Rahmen der Fehlergrenzen nicht signifikant. Das Molekül liegt auf einer Spiegelebene, die senkrecht zur Ebene des Ringes verläuft; es hat also exakte C_s -Symmetrie. Der Mittelwert der endocyclischen P-N-Bindungslängen liegt mit 1.562 Å zwischen den entsprechenden Abständen in 1 (1.560 Å)¹⁴) und 2 (1.565 Å)⁷. Eine Beziehung zwischen mittlerer Elektronegativität der Substituenten und dem P-N-Abstand im Ring, wie sie für eine Reihe trimerer Cyclophosphazene hergestellt wurde¹⁵), ist hier nicht erkennbar. Wahrscheinlich beschränkt sich ihre Gültigkeit auf Verbindungen des Typs (R₂PN)₃ mit nur einer Ligandenart. Eine größere Zahl inzwischen untersuchter Cyclophosphazene mit verschiedenen Arten von Liganden¹⁻⁹) (siehe auch Tab. 3) zeigt ebenfalls keinen einfachen Zusammenhang zwischen diesen Größen. Auch die in l. c.¹⁵⁾ postulierte Korrelation zwischen Elektronegativität und Bindungswinkeln ist auf Grund der neueren Strukturbestimmungen nicht signifikant.

Die einzelnen P-N-Bindungslängen im Ring von 3 zeigen erhebliche Unterschiede (Tab. 2). In dem P-N-P-Teil des Ringes, der von einer PF₂- und der P(NH₂)₂-Gruppe begrenzt wird, betragen diese Abstände 1.524 und 1.597 Å. Eine ähnlich große Differenz ist bisher nur im N₃P₃F₄(C₆H₅)₂⁵ (Tab. 3) beobachtet worden. Der kürzere Abstand liegt in beiden Fällen auf der Seite der PF₂-Einheit. Als Folge dieser Verstärkung der P-N-Bindung werden die exocyclischen P-F-Bindungen geschwächt und sind damit gegenüber den Abständen in 1¹⁴) und 2⁷ (beide 1.521 Å) mit im Mittel 1.532 Å etwas verlängert.

Ursache für die starke Verzerrung des $(P-N)_3$ -Gerüstes sind π -Bindungsanteile des Phosphoratoms in der $P(NH_2)_2$ -Gruppe (P2) zu den exocyclischen Liganden. Die Bin-

¹⁴⁾ M. W. Dougill, J. Chem. Soc. 1963, 3211.

¹⁵⁾ F. R. Ahmed, P. Singh und W. H. Barnes, Acta Crystallogr., Sect. B 25, 316 (1969).

dungen, die dieses Atom im Ring und zu den Amin-Stickstoffatomen ausbildet, sind im Rahmen der Fehlergrenzen gleich lang (1.597(5) Å, sowie Mittelwert $P - N_{Amin}$: 1.602 Å). Die Delokalisierung der π -Bindungen innerhalb des Ringes ist gegenüber der Ausbildung exocyclischer π -Bindungsanteile offensichtlich nicht begünstigt. Der Winkel bei P2 im Ring (N1 – P2 – N1') stellt mit 110.4° den kleinsten bisher beobachteten Wert bei den trimeren Cyclophosphazenen dar (siehe auch Tab. 3). Damit ist P2 nahezu tetraedrisch von Stickstoffatomen koordiniert. Die gefundenen N – H-Bindungslängen sind erwartungsgemäß kleiner als der theoretische Wert der Kernabstände. Sie liegen bei einem Mittelwert von 0.88 Å zwischen 0.82 Å und 1.05 Å. Während jeweils ein H-Atom in den beiden Amino-Gruppen des Moleküls auf der Spiegelebene (Punktlage 4c) liegt, ist das zweite H-Atom auf der allgemeinen Punktlage (8d) fehlgeordnet (in Abb. 2 gestrichelt gezeichnet).

Die Winkel an den beiden kristallographisch nicht äquivalenten Stickstoffatomen im Sechsring sind mit 117.2(3)° und 125.7(3)° sehr unterschiedlich. Zwar ist in der Reihe der bisher untersuchten Strukturen keine einheitliche Tendenz erkennbar, jedoch treten bei den trimeren Cyclophosphazenen im Ring besonders große P-N-P-Winkel in 3 und im geminalen N₃P₃Cl₃[N(CH₃)₂]₃ (124.2°)³⁾ auf. In beiden Verbindungen wird an dem jeweiligen Stickstoffatom ein sehr kurzer P-N-Abstand beobachtet. Eine verstärkte Einbeziehung des einsamen Elektronenpaares am Stickstoff in die Bindung unter Ausbildung einer π' -Bindung in der Ringebene¹⁶⁾, wie sie auch in den Tetrameren dieser Verbindungsklasse diskutiert wird, wäre damit besonders bei 3 nicht auszuschließen. Allerdings steht diese Hypothese nicht im Einklang mit den Bindungsverhältnissen im N₃P₃F₄(C₆H₅)₂ (Tab. 3).

Auch zeigt die Ausbildung von $N-H \cdots N$ -Wasserstoffbrücken in 2^{7} mit der eindeutigen Ausrichtung des freien Elektronenpaares am endocyclischen Stickstoff auf das Wasserstoffatom, daß eine wesentliche Beteiligung von π' -Bindungen in den trimeren Cyclophosphazenen nicht anzunehmen ist. (Zu einer anderen Interpretation siehe jedoch l. c. ¹⁷).)

Intermolekulare Wechselwirkungen, wie sie in 2 in Form von Wasserstoffbrücken beobachtet wurden, konnten in 3 nicht festgestellt werden. Die kürzesten intermolekularen Abstände ($F \cdots F$: 3.107 Å, $N \cdots N$: 3.364 Å, $N \cdots F$: 3.357 Å, $N \cdots H$: 2.60 Å, $F \cdots H$: 2.69 Å) liegen nicht unter der Summe der van-der-Waals-Radien.

Die bisherigen Ergebnisse von Untersuchungen an unsymmetrisch substituierten trimeren Cyclophosphazenen (z. B. $^{1-9)}$) zeigen, daß die Konformationsunterschiede der $(P-N)_3$ -Ringe nicht systematisch sind. Wahrscheinlich muß der kaum vorherzusehende Einfluß von Packungseffekten im Kristallgitter als bestimmend angesehen werden. Demzufolge kann auch der Planarität des Ringes in 3 keine große Aussagekraft im Hinblick auf die intramolekularen Bindungsverhältnisse beigemessen werden.

Herrn Dr. E. Niecke (Göttingen) danken wir für die Bereitstellung der Substanz.

¹⁶⁾ D. P. Craig und N. L. Paddock, J. Chem. Soc. 1962, 4118.

¹⁷⁾ P. L. Markila und J. Trotter, Can. J. Chem. 52, 2197 (1974).